Allen, E. J., & Oxenham, A. J. (2014). Symmetric interactions and interference between pitch and timbre.
Journal of the Acoustical Society of America,
135(3), 1371–1379.
https://doi.org/10.1121/1.4863269
Bishop, J., & Keating, P. (2012). Perception of pitch location within a speaker’s range: Fundamental frequency, voice quality and speaker sex.
Journal of the Acoustical Society of America,
132(2), 1100–1112.
https://doi.org/10.1121/1.4714351
Boltz, M. G. (2011). Illusory tempo changes due to musical characteristics.
Music Perception: An Interdisciplinary Journal,
28(4), 367–386.
https://doi.org/10.1525/mp.2011.28.4.367
Caruso, V. C., & Balaban, E. (2014). Pitch and timbre interfere when both are parametrically varied.
PLOS One,
9(1), e87065.
https://doi.org/10.1371/journal.pone.0087065
Cousineau, M., Carcagno, S., Demany, L., & Pressnitzer, D. (2014). What is a melody? On the relationship between pitch and brightness of timbre.
Frontiers in Systems Neuroscience,
7(127), 1–7.
https://doi.org/10.3389/fnsys.2013.00127
Demany, L., & Semal, C. (1993). Pitch versus brightness of timbre: Detecting combined shifts in fundamental and formant.
Music Perception,
11(1), 1–13.
https://doi.org/10.2307/40285596
Hall, M. D., Pastore, R. E., Acker, B. E., & Huang, W. (2000). Evidence for auditory feature integration with spatially distributed items.
Perception & Psychophysics,
62(6), 1243–1257.
https://doi.org/10.3758/BF03212126
Hall, M. D., & Wieberg, K. (2003). Illusory conjunctions of musical pitch and timbre.
Acoustics Research Letters Online,
4(3), 65–70.
https://doi.org/10.1121/1.1578951
Handel, S., & Erickson, M. L. (2001). A Rule of Thumb: The Bandwidth for Timbre Invariance Is One Octave.
Music Perception,
19(1), 121–126.
https://doi.org/10.1525/mp.2001.19.1.121
Handel, S., & Erickson, M. L. (2004). Sound Source Identification: The Possible Role of Timbre Transformations.
Music Perception,
21(4), 587–610.
https://doi.org/10.1525/mp.2004.21.4.587
Krumhansl, C. L., & Iverson, P. (1992). Perceptual interactions between musical pitch and timbre.
Journal of Experimental Psychology: Human Perception and Performance,
18(3), 739–751.
https://doi.org/10.1037/0096-1523.18.3.739
Luo, X., Soslowsky, S., & Pulling, K. R. (2019). Interaction between pitch and timbre perception in normal-hearing listeners and cochlear implant users.
Journal of the Association for Research in Otolaryngology,
20(1), 57–72.
https://doi.org/10.1007/s10162-018-00701-3
Makris, I. ; M., E. (2003). Judging the pleasantness of contour-rhythm-pitch-timbre musical combinations.
American Journal of Psychology,
116(4), 581–611.
https://doi.org/10.2307/1423661
Margulis, E. H., & Levine, W. H. (2006). Timbre priming effects and expectation in melody.
Journal of New Music Research,
35(2), 175–182.
https://doi.org/10.1080/09298210600835042
Marks, L. E. (1989). On cross-modal similarity: The perceptual structure of pitch, loudness, and brightness.
Journal of Experimental Psychology: Human Perception and Performance,
15(3), 586–602.
https://doi.org/10.1037/0096-1523.15.3.586
Marozeau, F., de Cheveigné, A., McAdams, S., & Winsberg, S. (2003). The dependency of timbre on fundamental frequency.
Journal of the Acoustical Society of America,
114(5), 2946–2957.
https://doi.org/10.1121/1.1618239
Marozeau, J., & de Cheveigné, A. (2007). The effect of fundamental frequency on the brightness dimension of timbre.
Journal of the Acoustical Society of America,
121(1), 383–387.
https://doi.org/10.1121/1.2384910
Marvin, E. W., & Brinkman, A. R. (2000). The effect of key color and timbre on absolute pitch recognition in musical contexts.
Music Perception,
18(2), 111–137.
https://doi.org/10.2307/40285905
McAdams, S., Vieillard, S., Houix, O., & Reynolds, R. (2004). Perception of musical similarity among contemporary thematic materials in two instrumentations.
Music Perception,
22(2), 207–237.
https://doi.org/10.1525/Mp.2004.22.2.207
Melara, R. D., & Marks, L. E. (1990a). HARD and SOFT interacting dimensions: Differential effects of dual context on classification.
Perception and Psychophysics,
47(4), 307–325.
Melara, R. D., & Marks, L. E. (1990b). Interaction among auditory dimensions: Timbre, pitch and loudness.
Perception & Psychophysics,
48(2), 169–178.
https://doi.org/10.3758/BF03207084
Melara, R. D., & Marks, L. E. (1990c). Perceptual primacy of dimensions: Support for a model of dimensional interaction.
Journal of Experimental Psychology: Human Perception and Performance,
16(2), 398–414.
Paavilainen, P., Arajärvi, P., & Takegata, R. (2007). Preattentive detection of nonsalient contingencies between auditory features.
Neuroreport,
18(2), 159–163.
https://doi.org/10.1097/WNR.0b013e328010e2ac
Pitt, M. (1994). Perception of pitch and timbre by musically trained and untrained listeners.
Journal of Experimental Psychology: Human Perception and Performance,
20(5), 976–986.
Robinson, K. (1993). Brightness and octave position: Are changes in spectral envelope and in tone height perceptually equivalent?
Contemporary Music Review,
9(1), 83–95.
https://doi.org/10.1080/07494469300640361
Robinson, K., & Patterson, R. D. (1995). The stimulus duration required to identify vowels, their octave, and their pitch chroma.
Journal of the Acoustical Society of America,
98(4), 1858–1865.
https://doi.org/10.1121/1.414405
Russo, F. A., & Thompson, W. F. (2005a). An interval size illusion: The influence of timbre on the perceived size of melodic intervals.
Perception and Psychophysics,
67(4), 559–568.
https://doi.org/10.3758/BF03193514
Russo, F. A., & Thompson, W. F. (2005b). The subjective size of melodic intervals over a two-octave range.
Psychonomic Bulletin & Review,
12(6), 1068–1075.
https://doi.org/10.3758/BF03206445
Sandell, G. J., & Chronopoulos, M. (1997).
Perceptual constancy of musical instrument timbres; generalizing timbre knowledge across registers. 222–227.
Schubert, E., & Wolfe, J. (2006). Does timbral brightness scale with frequency and spectral centroid?
Acta Acustica United with Acustica,
92(5), 820–825.
Shepard, R. N. (1991). Integrality versus separability of stimulus dimensions: From an early convergence of evidence to a proposed theoretical basis. In G. R. Lockhead & J. R. Pomerantz (Eds.),
The Perception of Structure (pp. 53–71). APA.
Siedenburg, K., & McAdams, S. (2018). Short-term recognition of timbre sequences: Effects of musical training, pitch variability, and timbral similarity.
Music Perception,
36(1), 24–39.
https://doi.org/10.1525/MP.2018.36.1.24
Singh, P. G., & Hirsh, I. J. (1992). Influence of spectral locus and F0 changes on the pitch and timbre of complex tones.
Journal of the Acoustical Society of America,
92(5), 2650–2661.
https://doi.org/10.1121/1.404381
Slawson, A. W. (1968). Vowel quality and musical timbre as functions of spectrum envelope and fundamental frequency.
Journal of the Acoustical Society of America,
43(1), 87–101.
https://doi.org/10.1121/1.1910769
Steele, K., & Williams, A. K. (2006). Is the bandwidth for timbre invariance only one octave?
Music Perception,
23(3), 215–220.
https://doi.org/10.1525/mp.2006.23.3.215
Tillmann, B., Bigand, E., Escoffier, N., & Lalitte, P. (2006). The influence of musical relatedness on timbre discrimination.
European Journal of Cognitive Psychology,
18(3), 343–358.
https://doi.org/10.1080/09541440500269548
Uwe, L., Christoph, R., & Claus, W. (2004).
Register Classification by Timbre.
http://hdl.handle.net/10419/22584
Vurma, A. (2014). Timbre-induced pitch shift from the perspective of signal detection theory: The impact of musical expertise, silence interval, and pitch region.
Frontiers in Psychology,
5(44), 1–13.
https://doi.org/10.3389/fpsyg.2014.00044
Vurma, A., Raju, M., & Kuuda, A. (2011). Does timbre affect pitch? Estimations by musicians and non-musicians.
Psychology of Music,
39(3), 291–306.
https://doi.org/10.1177/0305735610373602
Warrier, C. M., & Zatorre, R. J. (2002). Influence of tonal context and timbral variation on perception of pitch.
Perception & Psychophysics,
64(2), 198–207.
https://doi.org/10.3758/BF03195786
Wolpert, R. S. (1990). Recognition of melody, harmonic accompaniment, and instrumentation: Musicians vs. Nonmusicians.
Music Perception,
8(1), 95–106.
https://doi.org/10.2307/40285487